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A Higher-Order Godunov Method for Modeling Finite
Deformation in Elastic-Plastic Solids

JOHN A. TRANGENSTEIN AND PHILLIP COLELLA
Lawrence Livermore National Laboratory

Abstract

In this paper we develop a hrst-order system of conservation laws for finite deformation in solids.,
describe its characleristic structure, and use this analysis to develop a second-order numencal method
for problems involving finite deformation and plasticity. The equations of mass, momentum, and tnergy
conservation in Lagrangian and Fulerian frames of reference are combined with kinetic equations ol
state for the stress and with caloric equations of state for the intemal energy, as well as with auxiliary
equations representing cquality of mixed panial derivatives of the deformation gradient. Particular attemion
is paid 1o the wfluence of a curl constraint on the deformation gridient, so that the chatacteristic speeds
transform properly between the two frames of relt . Next, we consider models in rate-form for
isotropic clastic-plastic materials with work-hardening, and examine the circumsiances under which
these models lead to hyperbolic systems for the equations of motion, In spite of the fact that these models
violale thermodynamic principles in such a way that the acoustic tensor becomes nonsymmetric, we
still find that the characteristic speeds are always real for elasiic behavior, and essentially always real for
plastic response. These results allow us 10 construct A second-order Godunov method for the compulation
of three-dimensiona!l displacement in a one-dimensional material viewed in the Lagrangian frame of
reference. We also describe a technigue for the approximate solution of Riemann problems in order to
determine numerical fluxes in this algorithm. Finally, we present numencal examples of the resubts of
the algonthm.

1. Introduction

1.1, Overview

Solids often exhibit nonlinear behavior under sufficient applied forces. Materials
may stiffen or soften as they are compressed, leading to a nonlinear relation between
the material restoring forces and the deformation. This aonlinear deformation is
elastic if the material returns to its original shape when the applied force is removed.
In other cases the deformation is plastic, meaning that permanent dislocations of
the constitutive chemical bonds or particle positions have occurred. Another source
of nonlinear response in matcrials is due to the geometry of large deformations.
These nontinear material effects can be important in a variety of physical problems.
In this paper, we are interested in the dynamic response of nonlinear materials,
especially due to large forces such as earthquakes and explosions.

Qur goal is to develop numerical methods for the computation of propagating
discontinuities in nonlinear solids. Since second-order Godunov methods were suc-
cessful when applied to problems involving local linear degeneracies and complicated
globat wave structure in petroleum reservoir simulation (see [6], [42], [43]), we
have decided to develop second-order Godunov methods for finite deformation in
elastic-plastic solids. This necessitates some analytical development for solid me-
chanics; the equations of motion must be formulated as a first-order system, and
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the local hyperbolic structure of this system must be determined. We apply this
analysis 10 several material models of practical interest, and cxamine the circum-
stances under which these models lead to hyperbolic systems for the equations of
motion. This work constitules the frst principal result of this paper. The second
principal result is the development of the second-order Godunov method for finite-
deformation in clastic-plastic solids for general constitutive laws, even those given
in rate form. This numerical method then provides a useful tool for beginning a
study of waves in elastic-plastic solids, both in this paper and other papers to follow.

The equations of motion for general continua are derived from laws describing
the conservation of mass, momentum, and energy. In the Lagrangian frame of
reference, these laws take the form

ap).
0=t
pb
T
(.1 po'=ﬂ—VI(SLFT),
+ T,
P +fTV) = M - VI(SLFTV).

ar

Here p is the mass per volume at rest, 7 is time, fis the vector of body forces per
mass, v is the vector of particle velocities, a is the vector Lagrangian spatial coor-
dinates, S; is the second Piola-Kirchhoff stress tensor, F = dx/da is the gradient
of the current particle position, w is the radiative heat transfer per mass, and ¢ is
the internal energy per mass. In thTee dimensions, there is one equation for con-
servalion of mass, three equations for conservation of momentum, and one more
equation for conservation of energy, for a total of five conservation equations.
However, these equations involve twenty-one unknowns: density, velocity, stress
(which is a symmetric 3 X 3 matrix }, deformation gradient F, temperature and
internal energy. In order to close the system, we must specify sixteen additional
retationships among these unknowns, so that the end result is a first-order hyperbolic
sysiem,

Two different types of equations are needed to close the system. The first type
consists of constitutive laws thal characterize the matenial. For example, in an
elastic material the stress tensor is related 1o the deformation gradient by a kinetic
equation of state. Of course, there are many other kinds of constitulive equations
of use in modeling solid mechanics. Since our ultimate purpose is to identify a
general form for use with our analysis of the equations of motion, we have chosen
the rate-form

dFS, e dFe, do
1.2 i ol N 25 ks
(1.2) . H, ; + h, "
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for our characteristic analysis, since it includes a large class of constitutive models
currently in use. (In Section 4 below we discuss how other models, not given in
rate-form, can be treated with our analysis.) Here, @ is the absolute temperature
and ¢, is the unit vector in the i-th coordinate direction. Of course, we assume that
the parameters I, and b, in this equation satisfy the constraint that this equation
of state is invariant under rotations ol the frame of reference. In addition to the
kinetic equation of state, we also relate the internal energy to the temperature and
possibly the deformation gradient by a caloric equation of state,

Nole that because (1.2) is an ordinary differential equation, it allows the stress
10 depend on the history of the defermation gradient and temperature. Because
this evolution equation for stress cannot be written in conservation form, this means
that our system of equations is not, strictly speaking, a system of conservation laws.
As a result, the jumps across discontinuities could in principle be dependent on
the internal structure of the discontinuity.

The other type of equation needed to close the system of equations is some
identity relating the deformation gradient to the velocity. [n the Lagrangian frame
of reference, this identity takes the form

(1.3) el

Here are nine equations that can be added to the seven equations from the con-
stitutive models 10 obtain a closed system of Lagrangian equations, with all but the
ordinary dilferential equations { 1.2} for the constitutive laws in conservation form.
In addition, we assume that the initial-value constraint

(1.4) U, XF¥ =0

is satisfied by the deformation gradient; if this constraint is satisfied initially, then
{ 1.3) shows that i is satisfied for all time.

In the Eulerian frame of reference, there is a delicate point regarding the form
of the equality of mixed partials. An identity analogous 1o (1.3) can be obtained
by the Implicit Function Theorem:

!t IF
dr ax

(1.5)

However, a direct characteristic analysis of the resulting first-order system leads to
characteristic speeds that are not properly analogous 1o the Lagrangian speeds, and
to spurious cigenvector deficiencies. In a numerical scheme, such anomalies could
have disastrous consequences. These difficulties can be overcome by using another
identity for equality of mixed partials,

(1.6) CXFT=0,
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in order to rewnite { 1.5) in the non-conservation form

et
a7 dr 0 ax’

The system of partial differential equations involving ( l‘.‘.o‘) and t‘he Eulerian I‘or_m
of (1.1}, with the Eulerian form of (1.2) to provide information about partial
derivatives of stress, has characteristic speeds that are properly rv:lal_ed to the La-
grangian speeds. The constraint (1.6) is also an initial ‘f“"-'e constraint.

in Section $ below, we collect the physical conservation laws, constitutive laws,
and auxiliary identities into closed systems of differential equations f0f both frames
of reference. Specifically, we show that the Lagrangian charactenstic speeds are
either zero, ot occur in plus/minus pairs corresponding to the square roots of ll?c
eigenvalues of the 3 X 3 Lagrangian acoustic tensor. The Eulerian characteristic
speeds are related to the Lagrangian speeds by

Ag = nEv + M Flrgll.

An eigenvector deficiency occurs if one of the plus/minus pairs of La_grang,ian char-
acteristic speeds is zero (or, equivalently, if one of the analogou§ Eu_lerla_n wavesqceds
is equal to the normal velocity ). Furthermore, the charactenistic d:rccttorfs for either
of the full systems of conservation laws can be easily oblained from the eigenvectors
of the corresponding acoustic lensor. ‘

Once the general analysis of the characteristic structure of _thc equations of
motion has been established, the next task is 10 apply the analysis 10 spcc_lﬁc con-
stitulive models. We consider three-dimensional finite deformation of isotropic
models using the Jaumann stress rate, and elastic-plastic models with work-hard-
ening. In the elastic case, the acoustic tensor is

A=H+C,

where

v(-l-E

Hu T2 4 i,
PE

|
C = [InLSene + Senenl — nenlSe — Sgl EPl

Here ng is the direction of propagation in physical space, Sg is the Cauchy stress
tensor, and pg is the mass per volume in the current configuration. The symmetric
mairix H is positive-definite, with eigenvalues equal to the squares of the standard
P~ and s-wave speeds of isotropic linearly elastic infinitesimal disptacement. The
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nonsymmetnic matrix (' is due 10 the form used by the Jaumann stress rate to
guarantce rotational invariance. In spite of the nonsymmeitry, we show that this
matrix " is such that the acoustic tensor has real eigenvalues, which are positive
provided that the difference between the largest and smallest principal stresses is
nol too large,

During plastic response, the acoustic tensor 1akes the form

l
A=H-m-m"+C.
B

Because this matrix is a rank-one symmetric perturbation of the previous acoustic
tensor, the characteristic speeds during plastic response cannot be larger than those
in ¢lastic respanse, Our analysis shows that plastic yielding causes a discontinuous
decrease in the characieristic speeds from those obtained in elastic response, and
as a result it is possible to see more than one wave in the same wave family. It also
appears to be possible to obtain complex characteristic speeds with these models if
the yield sirength is sufficiently large; however, the yteld strength is generally fairly
low, and as a result we have not yet observed complex wavespeeds for elastic-plastic
response in metals,

Given the analysis discussed above, we have the analytic information required
to formulate a second-order Godunov method; see {6]. This algorithm is described
in Section 7 below. In this method, we use the characteristic form of the equations
to compute fluxes, which are differenced conservatively. Second-order accuracy in
smooth regions s obtained by constructing piecewise linear interpolants as initial
data for the characteristic solution at each time step, and oscillations at disconti-
nuities are suppressed by limiting the characteristic amplitudes of these interpolants.
The ordinary differential equation (1.2 ) is integrated subject to vield constraints in
order 1o update the stress in a rotationally invariant fashion. In the present work,
we consider three-dimensional displacements in a one-dimensional material; this
allows us 10 study both compressional and shear waves while simplifying the nu-
merical method for this initial work. We have also limited the method in this paper
to the Lagrangian frame of reference, for iwo reasons. First, the approximate solution
ol the Ricmann problem is less difficult in the Lagrangian frame than in the Eulerian
frame. Second. it is trivial to find the initial conditions for integrating the stress-
rale equations along particle paths in the Lagrangian frame.

In the eighth section of the paper we present numerical results 1o verify the
analysts and the method. The examples involve finite deformation of a nonlinear
elastic-plastic metal undergoing various levels of compression, tension, and shear.
As expected, the Godunov methoed is able 10 resolve strong shocks without devel-
oping destructive oscillations or excessive smearing of discontinuities and clipping
of peaks. We observe a variety of nonlinear wave behavior in the various regimes
tested, including compound waves due to local linear degeneracies in the charac-
teristic structure. In compressions we find that the elastic precursor shock and the
plastic shock are both in the same wave family and are separated by a constant
state that has associated with it a discontinuous change in characteristic speed. This
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behavior is due 1o the fact that states on the yield surface have two characteristic
speeds associated with them, depending on whether the matenial response is elastic
or plastic. In a second set of examples, we compare the numcrical_ results from the
second-order Godunov method to the analytic solution for spherical wave propa-
gation in solids with pressurized inner cavitics. Here the nurncricql resplls do not
show any of the oscillations commonly produced by standard finite difference or
finite element methods, and the time lag between the pressure rise and the peak
response is small.

Even though our numerical method only uses information about the local wave
structure, it is still possible 10 solve problems with complicated global wave structure,
Our numerical results show convergence 1o solutions involving, for example, local
linear degeneracies, partly as a result of our conservative diflerence scheme and
Jjudicious use of numercal viscosity.

1.2. Previous Analyses _ )

The charactenstic structure of the equations of motion in elastic solids has‘l:_ﬁeen
studied by a number of authors, Truesdell and Noll in {47] cxamined the conditions
for real characteristic speeds in isothermal 1sotropic elastic solids and related tho§e
conditions to the S-E (strongly elliptic) condition; an analysis of lhermmlasl:c
solids can be found in [1]. A number of authors (who were surveyed well in {27])
studied the shock jump conditions in various frames of rcferenc; for ;bstral;l con-
stitutive Jaws. Cristescu in [11] considered a variety of applications in solid me-
chanics, from vibrating strings and membranes to solids descnbed ina conservative
Eulerian framework. He examined the jump conditions for shocks, but avpndgd a
discussion of analytical or numerical results for problems involving_ c_comphcahons
due to coincident characteristic speeds (i.e., loss of sirict hyperbolicity) or to the
existence of extrema of the characteristic speeds along the individual wave curves
{i.e., local linear degeneracies). _ _ .

In recent years, the structure of solutions to problems involving local linear
degeneracies or loss of strict hyperbolicity has been addycssed by several mathe-
maticians. Wendroff (see [48]) construcied the global solution to Blemann problems
for strictly hyperbolic systems with local linear degeneracies or linearly degenerate
waves, and Liu (see [29]) proved the existence of these solutions. They found llhat
the individual wave curves could involve compound waves consisting of rarcl'acllon_s
and shocks. Keyfitz and Kranzer {see [25]) examined Cristescu’s mo@cl for a vi-
brating string and constructed the solution to the Riemann problem in terms of

strains and velocities. In this model, the square of one of the characieristic speeds
is the derivative of the tension with respect 10 the strain, while the othel_' speed
squared is the tension divided by the deformation gradient. Thus it is poss_lb!e 1_'or
the two characieristic speeds 1o be equal at one or more values of the strain, with
a coincidence of the wave characteristics. As a result, the solution of the Riemann
problem is more complicated than for strictly hyperbolic systems. Recc_mly. Tang
and Ting (see [41]) examined the charactenistic structure of general une-d:mcnsmf:al
deformation of nonlinear elastic solids. Unlike Keyfitz and Kranzerl, Tang and Tlpg
inverted the stress-strain relationship and examined the interaction of waves in
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terms of the components of the stress wensor. They found that the characteristic
speeds can become equal at umbilic points, around which the structure of the
solution of Riemann problems is quite complicated. Unfortunately, the work by
Tang and Ting does not generalize o many of the most-commonly-used material
moidels, because the stress-sirain relationships for these models are not inventible,
In passing, we note that additional work on the structure of solutions 10 general
hyperbolic 2 X 2 systems is under study by Shearer in [38]: also, there is work by
Shearer in [39] and Holden in [19] 10 determine the structure of the solutions 10
systems with finite elliptic regions. such as occur in strain-sofiening materials or
materials with non-convex strain encrgy lunctionals.

L.3. Other Numerical Methods ., -

The standard numerical approach for computing the dymamic response of solids
has been (o solve the equations ol motion in non-conservation form using centered
differences coupled with additional artificial viscosity. There is a significant dis-
advantage 1o this approach. In order 10 guarantee stability of the scheme and con-
vergence to the entropy-satisfying solution of the equations ol motion, an appropriate
amount of anificial viscosity must be added. Typically, it is impractical to add
enough ariificial viscosity to suppress all of the oscillations. since this smecars dis-
comtinuitics too much. These oscillations are a cause of significant concern in prob-
lems involving elastic-plastic solids. since they can iead to unphysical ratcheting of
the materiat response alternately on and off the yield surface. One could consider
using flux-corrected transport (see [§], {51])to control the introduction of artificial
viscosity, but this method has been known to produce entropy-violating disconti-
nuities for conservation laws with local linear degeneracies.

Another approach that has been receiving increasing atiention by the engineering
and mathematical communities in recent years is streamline diffusion (see [21]).
[23}). This method has provable convergence properties for problems in which a
transformation to “entropy variables” is available, so that the selection of the phys-
ically meaningful solution to the equations of motion is natural. However, the
entropy variables for general constitutive models in solid mechanics are unknown;
as a result, some analytical work still needs to be done 1o guarantee the convergence
of this method to the physically realistic solution for problems involving strong
shocks,

2. Notation

The notation of solid mechanics is by no means standardized; as a result, we
have adopied conventions that are panticularly well-adapted to the use of linear
algebra in the characteristic analysis below. We shall denote scalars by lower-case
Greek letters, vectors by lower-case Roman letters. and matrices by upper-case
(Greek and Roman) letters. Somewhat in contradiction of this convention, we shall
retain the same lower-case character for the entries of vectors and upper-case letters
for the entries of matrices. Vectors will always be understood to be “column veciors.”
Also, we shall use summation conventions when convenient.
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As an example, the vector a will be writien

The gradient with respect 1o g is

aa,

a
aa,
9
da,
We shall assume that the gradient operates only on objects to its right. “Row vectors
are formed by taking the transpose of vectors:

a’ ={ay, a;, m).

Thus the inner product of two vectors a and b is

a'h = ab,

Note that the order of the vectors & and b in the inner product does not matter.
However, the divergence of a vector v is written

Ty = 224
Vav 3a,"

In this expression, it is crucial that v appear to the righl_ olf Y, ) . o
Matnices are arrays of vectors. One very useful matrix is thg identity malm. 1]
which the columns are the Euclidean axis vectors and the individual entries are the

Kronecker deltas:

by By B
I=le,e;,e50= |8y bn b
by byp by

The trace of a matrix A is the sum of its diagonal entries:

tr(Ad) = e de, = 4,
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Another matrix invariant is the determinant, which will be denoted by [A] or by
det 4,

The outer product of two veclors is

a af, afy, af,
ab™ = L ay |18,, Ba. Bl = anfly  ay8, a1,
ay AT TR P . N

In particular, the matrix of derivatives of a vector X with respect to a vector g is

LT T
da, da, day

2wy =] 2 g
da “ om  da; dm
% dx ax
da, da; da,

Throughout the remainder of this paper, time will be dencied by the Greek
letier r. We shall let @ denote the Lagrangian coordinate, namely the location of a
panticle in its original Cartesian configuration. (Curvilinear coordinate systems,
such as cylindrical and sphericat coordinates, can be treated with the inclusion of
the appropriate metric coefficients. We have omitted these terms for simplicity.)
Obviously, @ is independent of +. We shall let .x denote the Eulerian coordinate,
namely, the current location of the particle, In Lagrangian coordinates, we consider
the current position x ofa particle to be a function of time r and its original position
. The notation d/ dr denotes the material ( total time } derivative, while 43/t denotes
the partial time derivative; this distinction is important only in Eulerian coordinates,
where the dependent variables are taken 1o be functions of 7 and x. We shall denote
the velocity of a parnticle by

In Lagrangian coordinates, the velocity is a function of @ and 7, while in Eulerian
coordinates it is a function of x and 1. In Lagrangian coordinates, we can also
define the deformation gradient

We assume that the determinant of Fis positive, so that the motion has not turned
the material inside-out and so that the correspondence between Lagrangian and
Eulerian coordinates is invertible. The inverse of the deformation gradient can, by
application of the inverse mapping theorem, be considered a function of xand r
for applications in Eulerian coordinates,
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3. Conservation Laws

The motion of a solid is determined by the conservation of mass, momentum,
and energy. together with the equations of state for the material. [n this section of
the paper, we will state the conservation laws without derivation, The interested
reader can find a uscful discussion of the derivation of these conservation laws,
together with their expression in conservation form for Eulerian coordinates, in
[L1}or[12].

In the equations 1o follow, we shall denote the mass density by p, the force per
unit mass acting on the body by £, the stress by S, the internal energy per unit mass
by e and the radiative heat transfer per unit mass and unit time by w. (More
generally, fand w might include diffusive terms, such as viscous lorces and heat
ditfusion, that depend on the conserved variables.) As appropriaie, we will subscript
these variables by E or L to denote the relevant frame of reference.

}.1. Eulerian Forms
Conservation of rmass in Eulenian coordinates can be writlen as the continuity
equation or in conservation form:

d o .
0 =2PE 4 5e¥Tv  continuity equation,

dr
(3.1)
_ 9pe

0 dr

+ YT {vpg)} conservation ol mass.

Conservation of momentum can be written as Newton's second law or in conser-
vation form;

A .
f¥P=———VIS Newton's second law,
T PE
(3.2)
dpe

.
v . .
pefT = 5 + VT (vpev' — S¢) conservation of momentum.
T

Finally, conservation of energy can be written as the first law of thermodynamics
or in conservation form:

lr(SE &fv
de dx
w= — — ———— first law of thermodynamics,
dr PE
(3.3

+ by T
pulo + Ty = ) )

r

+ VT {vpele + vTv] — Sev) conservation of energy.
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3.2. Lagrangian Ferms
Given a system of conservation laws written in the Eulerian frame of reference
s
'’

_.._+vT T — T
ar 0 r,

we can rewrite the system in the Lagrangian frame of reference as follows:

3 FluT
(3.4) T—+V;’(IFIF"[GT*WT])= | FIr7.

These res_utts suggest that the Lagrangian density and stress should be related to
the Eulenian density and stress by

o1 = pel Fl,

(3.5)

SL= FSeFTLF

(5. is commonly called the second Piola-Kirchhoff stress i
, and Sg is commonl
called the Cauchy stress.) Then the Lagrangian form of conservation of mass is ¢

0 =28 continuit ti
an y equation,

0 _ 6pL .
e conservation of mass.

The Lagrangian form of conservation of momentum is

avl 1, T
—— = — Y2(5.F") Newtons second law
dr (49 ’

1=
{(3.6)

9,
T _ 98 »
oSt = e VI{SFT) conservation of momentum.
The Lagrangian form of conservation of energy is
lr( S FT g)
de da
(3.7) 7 —pL—— first law of therrodynamics,

_dp e+ bvTvy
prlw+ fTy) = B VI(S.F"v) conservation of energy.

T Y . O
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4. Equations of State

There are two kinds of equations of state that are needed to help to close the
system of conservation laws. The first is called a kinetic equation of state, and rc!ales
stress 10 other important vanables in the motion, such as the deformation gradl;pl.
The second is the caloric equation of state, relating the lnicrngi enetgy (o quantities
such as tlemperature. Under ideal circumstances, these equations of state obey the
second law of thermodynamics, which requires that the time rate of change of the

ion is non-negative. .
em?ﬁ:lﬁ;?gﬁ:l dated survef:of the literature on constitutive models for elastic
materials, we refer the reader 1o the books by Malvern (see {30]) anq Fung {see
{13]). We shall atiempt to adopt as general an_a_pproach o lhc_ equations o:' §|a:e
as possible without sacrificing clarity of exposmon._FurlI:lcr. since our gofx'T is to
examine the structure of waves in solids, we shall avoid a dlscu_ssmn of the di usn]f;
effects present in real materials. The inclusion of su(_:h effects in th; mod_els woul
tend to obscure the degree 10 which we are controllm_g ll‘m numcncal_dnﬂ:usm!\ in
our comgputational schemes and would not introduce significant complications into
the numerical method, )

We assume that the kinetic equation can ¢
expressed directly in the rate form

ither be differentiated in time or

dSge; . AF e ‘i _aE
T ‘dr

(4.1) I = —H,F Fe

- . o
Here, # is the absolute temperature. If the derivatives of Sg with respect to F~' and
# exist, then we can formally identily the matnices

- aSee; .,
(4.2) H; = - EF_'—Q.F )

(note that fl,, is a matrix, not the i, j entry of a matrix), and the vectors

o aSge;
“3 b=

The equivalent form for the kinetic equation of state in tl_-u: Lagrangian frame is
(1.2), where we formally identify (when the derivatives exist)

_ aFSLt’,

kS, e
(4.4) H, = h, = .

aFe, £
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These forms (1.2) and (4.1} are broad enough to encompass a very large class of
constitutive models; in particular, it allows us 10 treat the models used most often
in the numerical study of plasticity.

Constitutive theory makes very specific demands on the form of kinetic equations
of state, demands that we are not able to display in (1.2} or (4.1). One is that the
constitutive law should be frame-indifferent, so that a time-dependent orthogonal
rotation of the frame of reference induces the correct similarity transformation in
the stress. This requirement forms the basis of simple (elastic ) matenials; see [47].
Another useful notion is that there is a strain energy function, formed with respect
o 2 homogeneous stress-lree natural state, so thal its time derivative is equal 1o
the trace term in the first Jaw of thermodynamics (3.3) or (3.7). This requirement
forms the basis ol hyperclastic materials; see [47). The notion of a hyperelastic
material is very useful in developing variational principles that are imponant in
finitc element analysis for static problems. Furthermore, this notion can be gen-
eratized to include thermal effects and plasticity; see [40). Unfortunately, hyper-
elastic models have not been used as extensively in applied computations involving
plasticity. Nevertheless, the constitutive laws for these kinds of elastic models could
easily be differentiated with respect 10 time and expressed in the forms (1.2) or
(4.1), for the purposes of developing the quasilinear forms in Section §.

Another useful class of constitutive models is given in rate form. This class of
models is most easily fit to laboratory data, where the data commonly take the
form of measurement of changes in stress due to changes in strain (or vice versa)
in the Eulerian frame of reference. These models rarely satisfy the second law ol
thermodynamics, but they are able to reproduce the laboratory data: their propo-
nents suggest that these models are accurate even though they ate thermodynam-
ically inconsistent.

Even though the models used for plasticity may violate thermodynamics, for
our purposes they may be acceptable if they satisfy two fundamenial principles.
One is that they must lead to hyperbolic systems, so that initial value problems are
well-posed. This point is seldom addressed in engineering literature, and serves as
the focal point of the discussion in Section 6 below. Our other requirement is that
the models must be frame-indiflerent.

There are other useful properties that stress rates should possess: see [24]. One
is due to Prager, who suggested in [37] that if the stress rate is zero, then the
eigenvalues ol the stress should be constant. Two such stress rates are the Jaumann
siress rate and the Green-Naghdi stress rate. The former is easy to compute (see
[20], [22]). and its effect on the acoustic tensor, although nonsymmetric, is easy
to determine (see Section 6.1 below). However, the Jaumann stress rate has no
conjugate measure of finite strain (see [3]), and does not lead to a symmetric
stiffness matrix; see [31]. Further, kinematic hardening causes oscillatory response
in the back stress during simpie shear; see [24], [ 34]). For this and other reasons,
the faumann stress rate has been replaced by the Green-Naghdi stress rate in some
numerical computations. However, the Green-Naghdi stress rate is significantly
more expensive in three-dimensional computations, and its effect on the acoustic
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tensor {also nonsymmetric) is difficult 10 analyze in three dimensions. Mehrabadi
and Nemat-Nasser in [ 32] have shown how 10 relate the spin Lensor in the Green-
Naghdi stress rate 1o the spin tensor for the Jaumann stress raie; this formula is
complicated, but proves that the required derivatives of terms in the acoustic 1enasor
for the Green-Naghdi stress rate actually exist and can be employed in computations.
Another objective stress rate is the Truesdell stress rate; sce [353}, [46]. This stress
rate arises naturally from hyperelastic constitutive laws and leads to a symmetnc
acoustic tensor: however, it fails 10 satisfy Prager’s condition of constant eigenvalues
of Cauchy stress for zero stress rate. This is one reason why it is not commonly
used in computations.

Our demands on the caloric equation of state are less stringent. We assume that
the internal energy is a function of the absolute temperature 8 and the deformation
gradicnt F, in such a way that the partial derivatives

i3 O
(4.5) Y % 0 Y T aFe

are available. This class of caloric equations of state includes, for example, ideal
thermoelastic solids.

5. Characteristic Analysis of the Equations of Motion

In this section we shall write the complete systems of equations in first-order
conservation form, and determine the characteristic speeds and characteristic di-
rections of the motion. Qur purpose in this section of the paper is not to reproduce
at length the classical results relating the characteristic speeds to the square roots
of the eigenvalues of the acoustic Lensors. We have other needs that are not met by
the existing literature.

In order to apply modern numerical techniques for shock-capturing, it is nec-
essary to write the equations of motion in firsi-order conservation form, and to find
associated quaslinear forms with the correct wavespeeds for characteristic tracing.
Our approach to writing the equations in first-order conservation form requires the
use of the deformation gradicnt as a conserved quantity; however, the constraint
that the deformation gradient be the gradient of a deformation introduces compli-
cations into the selection of the conservation forms and quasilinear forms of the
equations of motion, as we shall see below.

For each frame of reference, we shall follow the same order of presentation.
First, we shall assemble the system of conscevation laws in the form appropriate
for a conservative difference method. In addition to this system of conservation
laws we shall write a stress-rate equation, the careful integration of which could
determine the value of stress at various lime levels. { Here, we are more concerned
in selecting a form for the stress-rate equation that is instructive for our charactenistic
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anal_ysns. rather than one appropriately structured for frame-indifferent time int
grallon.) Alterward, we shall rewrite the system of conservation laws in lcrmsmfe-
::;lt‘ﬂl;f;nk;\:;wnshlhat arc useful in evaluating the flux in the conservation law ;,‘h:

alysis of the characteristi i i :
ith respect (6 o “nuitfa::};fe[:? of the conservation laws will be performed

5.1. Lagrangian Analysis

5.1.1. Conservation Form

Ou; Lagrangian_syslem of equations consists of four equations, {3.7)-(3.8)
governing conser'vahon of momentum and energy, as well as nine cqu;atic.ms ( 1-3 ).
also in conservation form, expressing equality of mixed partial derivatives i:; s ace
and time. This allows us to write a system of thirteen conservation laws pace

éul

3 3 tvel=rl,
where

YL ~FS8, f

(e + vTvip, ~vIFS, pTL

(5.2) 1 = Fe, Giw | vl | = (w +{, ie

F(’) _\'?I 0

.F(’] "VBI 0

In adc_hlion to this system of conservation laws, we also have the ordinary differential
equations ( | 2 ) I'_or the stress. These ordinary differential equations can be considcrle:i
tobea prescription for evaluating the stress and its derivatives: indeed, if the str
were described by a hyperelastic model, there would be no neéd 10 im'egratc { lc.‘;’;
in the course of solving the equations of motion. {See [40] for a discussion of l'h
advantgges of an approach of this form in the context of plasticity.) At any ran :
the ()_rdnngry differential equations { 1.2} do not contribute to issues c.oncemii lhe,
classn_ﬁ_cauon ul".thc system of conservation laws. Finally, we note that thl:g T
‘c(c’)nb(:mol; (1.4)is ass1_1mcd to hold; this is an initial-value condition that may nccl:L
to be O(c‘n orced occasionally during the time-stepping procedure of a numerical

Note that all of the entries of 1, and G, can be considered 1o be functions of

l“(’]
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Thus the systemn of conservation laws {5.1) is hyperbolic if and only if the matrix

3G m, _ 3Gy {duy !
6u|_ aWL dwy

has rea) eigenvalues for any unit vector n,. Equations (5.1) and (5.2) pose the
proper form for purposes of conserving the appropriate quantities in our numerical
algorithm, and for purposes of bequeathing the correct shock speeds to the com-
putational results. However, another step of the second-order Godunov micthod
requires the computation of monotonized slopes in characteristic quantities for the
purposes of constructing kefl and night states in a Riemann problem. (See Section
7 below,) We want the results of the characteristic tracing step to provide the in-
formation needed 1o construct physically meaningful fluxes at the ceil interfaces.
For this step of the computation, it is useful to write the equations of motion in
non-conservation form. This form of the equations obtains the same characteristic
speeds as in (5.1) and (5.2), but the characteristic directions we shall determine
below are far more simple.

5.1.2. Quasilinear Form

We can use the equality of mined partials ( 1.3) to write the system of equations
(5.1) and (5.2) in the form

Ip, 0 000 v
0 py 000 3 [}
0 —-h I 00 ™ FS e,
0 - 0 I 0 FSie
0 -h; 0 0 [ FS.ey
(5.3)
0 0 _‘MU ’—Iﬁzj "Iﬂ]‘; v _fpl
-p¥df 0 O 0 0 Py ¢ wpy
+ _HU 0 0 0 0 a FSLﬂ = 0 ’
~H; 0 0 0 0 /| FSpe; 0
"H;j 0 0 0 0 FSLe] 0
where v and ¢; are defined by (4.5), and
' i
(5.4) b}--m(fstFT’chf).

Also recall that when the derivatives exist, we can formally identify H, and h; as
in (4.4). In order to analyze the hyperbolicity of this system, we assumne (without
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los§ of _gcnerali_ty) that the coordinate system has been rotated so that the normal
#y_is aligned with the first coordinate axis. Then hyperbolicity requires

oo 0 000 | 0 ¢ -1 00
0 py 000 -piybl 0 0 0 O
B=|0 -h I 00 -Hy 0 0 00
0 -h, 07 0 -Hy 0 0 00
0 -hy 0 0 [ -H;, 0 0 0 0
1
0 0 -f— 0 0
(4
| e o o 00
| -An 0 0 00
-An ¢ 0 00
—A;.OOOO

to have real eigenvalues, Here we have used the notation

(5.5) A,=H, +hb!.

It is obvious that seven of the eigenvalues of B are zero, with right cigenvectors
corresponding to the appropriate columns of the identity matrix, This deflation
process can be continued, reducing the problem to finding the eigenvectors and
eigenvalues of A, :

(5.6) Ay X = XA, .

Afterward, we can assemble the eigenvectors of B:

0 01001 xoA 0 -xA 00
T 0 0 00 bfX I »lx 00
A, 0 0 00 XA, 0 XAy 0 O
Ay 0 0 00 AnX 0 AyX 1 0
A, 0 0 00 ApX 0 AyXx 0 f
(5.7)

XA 0 -XA 0 0|[-A 00 00

X 1 bTX 0 0O 0 00 0 0

= (XA, 0 XA 0 O 0 0 A 0O

AnX 0 ApX I O 0 0 06 00

AnX 0 AyX 0 I 0 00 00
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In summary, if the system is hyperbolic, then there are seven characteristic speeds
equal to zero, and six other characteristic speeds occurring in plus/minus pairs.
An eigenvector deficiency occurs if any of the speeds in the plus/minus pairs is
equal to zero.

From this analysis, we can determine the circumstances under which the system
{5.3} is hyperbolic. In order to do so, we shall use the definitions (5.4} and (5.5),
as well as an orthogonal change of coordinales, 10 rewrite equation (5.6) in the
form

1
(58) A Xw= [H..-n.-n. ni th— n.bT]X = XA{, (summed over i)
L L

where n, are the entries of an arbitrary unit vector. The equations of motion are
hyperbolic il and enly if equation (5.8) holds with a real matrix A, for any unit
veclor ny . If we can assume that the derivatives of the first Piola-Kirchhoff stress
FS; exist with respect to F and 8, then we can rewrite this result in the form

6FSLH|__|_+6FSL"L_L_(H{SLFI —p,_—a(—)])(= XAL.

L4 -
(58%) AX [aFnL PR Yt oFn,

This condition for positive cigenvalues is consistent with Truesdeil's notion of a
strongly elliptic function for isothermal isotropic elastic solids (sce [47]), and must
be verified for the individual constitutive model and caloric equations of state. In
the discussion to follow, we will call Ay the Lagrangian acoustic tensor, even though
the conventional acoustic tensor in the continuum mechanics literature Ignores
thermal effects.

Before concluding the Lagrangian characteristic analysis, we note that in some
applications { such as gas dynamics ) the stress is formulated disectly in terrns of the
internal energy. In other applications, the caloric equation of state may be difficuit
to solve for temperature. Thus, there are casés in which it may be advantageous to
perform a characteristic analysis using ¢ instead of 8. The form of the characteristic
analysis in such a case can be related to the analysis above by taking ¥ = | and
¢; = 0; that is, no separate characteristic analysis is nceded.

5.2. Eulerian Analysis

Next, we turn to the problem of identifying the characieristic speeds for the
Eulenian formulation of the system of conservation laws. Here, we need to make
sure that we have all of the variables needed 1o evaluate the flux in our quasilingar
equations. We shall also need to be careful about the correct form of the equality
of mixed partial derivatives, in order for the Eulerian characteristic speeds to be
properly related to the Lagrangian speeds,
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5.2.1. Conservation Form
The Eulenan form of the conservation equations is

aul
(5.9) 5 tViGE=rl,
where
PE pev’
ver vppvT — S
w - LW | e i s,
Fle PR Flvel '
Fley Flve]
Fle Flvel
(5.10)
0
SpE
re (w+fTv)pe
0
0
0

Thc_ laeft nine equations in this system come from the equality of mixed partial
fjcr_wauvcs( 1.5), which has been chosen from several alternatives in order to min-
imize the number of variables nceded in the guasilinear form (5.11) below, In
addition to this system of equations, we have the stress-rate equation {4.1).

Note that there is a difficully with this formulation of the conservation laws in
lhg Eulerian frame of reference. The stress-rate equation (4.1) uses the equality of
mixed partials in the form ( 1.7), while the sysiem of conservation laws {5.9) and
(5.10) uses the form (1.5). Further, a direct characteristic analysis of (5.9) and
(5.10) p_ruduccs some charactenstic speeds that are not the proper anatogues of the
Lagrangian speeds. it would have been tempting to apply the equation (3.4) for
change of lrame of reference to the Lagrangian equation ( 1.3) for equality of mixed
partial derivatives, and derive

HF el KT
g P N@IF el FT - Fe FT[vT) = 0

for th_e Eulcri_am form of equality of mixed partial derivatives, This is the form of
equality of mixed partial derivatives chosen by Plohr and Sharp in [36]. However,
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direct charactenistic analysis of this conservation law, by itseif, does not obtain the
propes characteristic speeds, either.
1n both the Lagrangian and Eulerian frames of reference, the system of conser-
vation laws must be augmenied by equations representing equalily of mixed second-
order partial derivatives in space. The obvious purpose of these consiraints in the
Lagrangian frame is to guaranice that the deformation gradient is the gradient of
a vector feld, namely the current particle position. In the Eulerian frame, the
inverse deformation gradient is likewise constrained, The need to impose these
constraints has been observed by several authars, such as Hanyga in [17], and Plohr
and Sharp in [36]. With these constraints, the equations of motion in first-order
form are fully and correctly specified. However, the above authors do not consider
the issue of how to impose these constraints properly in a characteristic analysis.
Since we are interested in using characteristic information in the development
of a second-order Godunov method, we shall determine the characteristic spreds
very carefully. In order to write the equations of motion in conservation form, we
might prefer equation (1.5) for the cvolution of the inverse deformation gradient,
while for purposes of the characteristic analysis we shall find that (1.7) is better.
The curl condition (1.6) can be used to show that (1.7) and {|.5) are equivalent,
In this regard, we note that if the curl of the inverse deformation gradient is zeTO
in the initial data, then it is zero for all time. { The proof of this fact uses the fact
that the curl of the velocity gradient is zero.) Numerically, it may be necessary to
enforce this curi condition occasionally during the computation, much as the
div B condition in magnetohydrodynamics is handled. {In facl, experience with
numerical methods for magnetohydrodynamics indicates that catastrophic failure
of the integration can occur if div B =0 is not enforced during the timestepping
procedure.} Another option is 10 replace the appropriate equations in (5.9) and
(5.10) with the equations { 1.7), which are not in conservation form:; this necessitates
some modification to the conservative difference step in the Godunov scheme. The
proper form of the Eulerian equations of motion for numerical purposes will be
the subject of a future paper.

5.2.2.*Quasilinear Form
Looking at {5.10), we sce that the fAlux depends on the variables

PE
v

[
we m | Spey
ngz
YT
Flv

Thus the Eulerian frame requires more variables 1o evaluate the flux than does the
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lzgrangiaq frame, and even more variables than are conserved in (5.9)and (5.10).
We can write the system for these flux variables in matrix-vector form as loflows:

I 0 0 0 0 00 PE
0 Ipe o 0000 v
0 0 pey 0000, |8
0 0 -h, 1 0 0 0 |- Seey
6 o -k o1 00|% Se
0 0 -hy 00 I O Seey
0O -F' 0 000 [ Fly
v, eeef O 0 0 0o 0 P
0 ’PEY} 0 "‘15” ""léy _1631 0 v
0 voebf veev, 0 0 0 0 3 [
¢+ (o -0 —hy N 0 0 0 |— |Se
0 —Hy —hy, O Ml 0 0 8% | Seey
0 -HA; —hy, 0 0 Iy 0 Sees
0 0 0 0 0 0 Iy Flv
0
fﬂs
wpg
= 0 .
0
0
1}
where

1 de
b = ———-(e'-'S + pg—— F!
5 ooy \ et pE BF"ejF .

and H,; a_nd I;.' are given in (4:1 ). Recall that when the derivatives exist, we can
formally lde.nufy H, and h, as in (4.2) and (4.3). In order for the system (5.11)10
be hyperbolic, we require

vi pee] O 0 0 0 o“
0 Iv 0 -—l-!- o 0 0
. PE
F= 0 b v 0 0 0 0
0 -Ay O Iv, 0 0 o0
0 -Ay; 0 0 N 0 0
0 -A; O 0 0 Iv; 0
0 F'vy 0 -F'X 0 0 m
L pE i
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10 real ¢igenvalues. Here, we have defined
A, =R, - hbl
By shifting the eigenvalues and deflating, we derive the interesting eigenvalues from
(5.12) ApX = XA%pe.

Assuming that we can solve (5.12) with real nonsingular A, we can solve the ei-
genproblem for B:

1 —peel X 0 —peel X 000
0 —bTx | -blX 000
B‘ o XAJpE 0 {Ang 0 0 0
0 AnX 0 Ay X o0
0 Ay X 0 Ay X 6 ro
0 —F'X(lvy—A) 0 —F'X(Iv,+A} 0 0 J
1 —peel X 0 ppel X 000
0 XA 0 - XA 000
0 -aTx 1 -bTX 000
=| 0 XAZ.OE 0 {Ajpg LU 1]
0 AnX 0 Ay X 700
0 Ay X 0 AnX ¢ ro
0 —F'X(Ivi—A) 0 —-F'X(lqy+A) 0 0 |
v, 0 0 0 o 0 0
0 M—-A 0 0 0 0 0
0 0 vy 0 0 0 0
x10 0 ¢ vi+A 0 0 O
0 0 0 0 N 0 0
0 0 0 0 0 M O
0 0 0 0 0 o M

We want to find a condition that is satisfied if and onl?v if{5.11) is hyperbolic. By
a rotation of the axes, we can rewrite equation {5.12) in the form

(513) Ak = I:l,,-n,-n,-i + ﬁ,-n,il‘);r X = XA}, (summed over i)
PE PE

where n; are the entries of an arbitrary unit vector. The system (5.11) is hypcrblolic
ifand only if for any unit vector n (5.13) is satisfied with real Ag. The chara.nctensuc
speeds are either v "ng or + A + vTne. We shall call A the Ewlerian acoustic tensor,
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If the derivatives of the Eulerian stress Si exist with respect to F~' and #, then we
can use (4.2) and (4.3} to rewrite (5.13) in the form

Sere 1 OSum | B¢ _
REL X m—f —EF per - Is + —_— )
(5 13 ) A!_X [af'_lﬂg P ‘)fp% (HESE PE 3F_ln5 )JX

= XAi,

5.3. Equivalence of the Lagrangian and Eulerian Formulations

From the analyses of the preceding two sections, we have seen that the Lagrangian
equations are hyperbolic if and only if for any unit vector n, the Lagrangian
acoustic tensor has non-negative real eigenvalues. We also have seen that the Eulerian
equations are hyperbolic if and only if for any unit vector ne, the Eulenian acoustic
lensor has non-negative real cigenvalues, If the derivatives of stress with respect 1o
deformation gradient and absolute lemperature exist, then we can relate the Eulerian
and Lagrangian acoustic tensors quite casily. Since the Lagrangian and Eulerian

unit normals are related by

my=F TH'E

for some scalar v (see, for example, [27] or [1]), we can use the relationship (3.5)
between the stress and density in the two frames of reference, the formula

oF' _ aF
ar £ afF'

for the derivative of an inverse, and the equation

04 TnjAl 0
a4n

for the derivative of the matrix of co-factors, to show that
ALI‘Z = AE.
(Here, we have assumed that all the required derivatives of Lagrangian and Eulerian

stress actually exist.) Since the matrices Ay and A4g are scalar multiples of each
other, they share the same eigenvectors:

ALX = XAY |, Ak = XAl

Thus we obtain the following relationship between the Lagrangian speeds and the
Eulerian speeds minus the normal velocity:

AL= Al Flgl or Ag = ALW'
L
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§. Characteristic Analyses of Specific Material Models

In Sections 5.1 and 5.2 we reduced the characteristic analysis of the equations
of motion to an eigenproblem for a 3 % 3 mairix. In the sections below we shall
examine this eigenpreblem for a few models of common usage, in order to determine
whether these models lead 1o hyperbolic systems of equations. This discussion is
not intended 1o be exhaustive of models for solids; instead, we are primarily con-
cerned with determining that some of the common models for plasticity lead to
hyperbolic systems. We have chosen models that are used to describe elastic-plastic
solids in practice (such as in the well-known hnite element codes DYNA2D and
DYNA3D), in spite of the fact that these mode!s may not obey thermodynamic
conditions such as the second law, For further discussion of the use of these models
in practice see [22]. We also note that the analysis in these sections is similar to
that by Mandel {31}, who analyzed the effect of plasticity on the characteristic
speeds, but ignored the effect of the stress rates.

6.1. Elastic Laws in Rate Form
We shall use the Jaumann stress rate

S,
(6.1) Se = er+ W1Se + S,

where W is the spin tensor

I[av  [ovy"
(6.2) W—i[a‘(a) ]

Since W is antisymmetric, we can use it to generate an orthogonal matrix Q(7),
defined by the initial value problem

(6.3) —=wa , Q0.,=1

As a result, the Jaumann stress rate can be written in the form

. daTs.0n

(6.4) Sem@— 0.

This relation shows that the Jaumann stress is determined by rotating the rate of
the unrotated stress,

(6.5) 5= QS
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From {6.4), we can also see that il the Jaumann stress rate js zero, then the eigen-

vitlues ol Sy arc constant.

For clastic behavior, we assumne th i
s at the Jaumann stress rate i
rate of deformation, defined by ® reated to the

Zlax  A\dx/ |°

through Hooke's faw in rate form:

(6.7} S =D+ I(x - 233)" D.

Here, x is the bulk modulus and # is the shear modulus, neither of which is necessarily

constant. In order to determine whether (5.9)-(5.10)is h i
(6.4) 1o rewrile (6.7) in the form: ( Vs hyperbalic, we use (62)

dSe _[av aviT 2ul av
4 [ax +(3;) ]" “(“ T)"a‘;

oG-S E- (G

By a straightforward calculation, we see from this equation and (5.13) that the

hyperbolicity of the equations of motion i i
| tion is determined i
Eulerian acoustic tensor Py the elgenvalues of the

AE =H+ C.
where
K+ £
(6.8) Hut yp 3,1
PE
(6.9) CoIn{Snm + Sgnrenf — ngnlSe — Sell/2pg.

Thq acoustic tensor is the sum of a symmetric matrix If that is derived from the
strain rate terms, and a nonsymmetric matrix C that comes from the stress rate
terms, Even though the acoustic tensor is not symmetric, we can perform a careful
analysis to show that it has real positive eigenvalues,
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We note that m is an eigenvector of the acoustic tensor, with Figcnvaluc
(x + {4u/3}))1/pg. We shall use deflation to determine the remaining eigenvalues.
Let { be an orthogonal matrix, the first column of which is a; :

(6.10) ) Q=1Ine, Q:l.

As a result, Ag is similar to

X+ -3-‘ —PIESF_Q;

0 Hu + niSened) - Q‘{SEQZ* PE

QT AeQ =
The remaining eigenvalues of the acoustic tensor are eigenvalues of the 2 X 2
symmelnc matnx

g+ niSene |
PE

1
I - OIS0 5.
PE

and are therefore real; however, the equations of motion are hyperbolic ifa_nd only
if these eigenvalues are non-negative. The Rayleigh quotient for this matrix takes
the form

1
(g + nfSgne - ZTQ-{ShQJZ“z“_ .
PE

where z is an arbitrary unit vector. Note that both #[Syng and z7Q7S, (a2 lie
between the smallest and largest eigenvalues of S;. As a resull, the remaining ei-
genvalues of the acoustic tensor lie between {g — o)/ pg and (g + ¢)/p,., where o
is the difference between the largest and smaliest eipenvalues of Sg. If o < g, then
the acoustic tensor will have real, positive eigenvalues, and the equations of motion
will be hyperbolic. Furthermore, if ¢ < « + 1, then the acoustic tensor has a full
set of eige;weclors. We note in Section 6.2.6 below that o typically lies well below
the value of u.

This model can be rewritten in the Lagrangian frame of reference withoul any
significant effort. Because of our discussion in Section 5.3 above, we can write

K+E

A= rpi FENLFTm ) + F Ty | F nlF!
L

PL

1
+ (InfSn + FSmNTF ' = F nn] S FT — FSLFTF "n1?) L
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Furthermore, it is straightforward to write the constitutive law in a form involving
Lagrangian variables.

6.2. Plasticity with Isotropic Work-Hardening

6.2.1. Background on Plasticity

When materials are subjected to sufficient applied forces, the individual particles,
grains, or chemical bonds in the material can be dislocated. If the applied lorces
are subsequently removed, the material will relax to a permanently deformed con-
figuration. This permanent deformation is also called plastic deformation. The
behavior of the material then becomes a function of the history of its applied loads;
this phenomenon is called Aysteresis. We shall discuss some elementary models
for elastic-plastic materials, Qur discussion will not incorporate the very interesting
work on plasticity models for finite elastic and plastic deformations; see [16].[26].
28], [40]. We shall also ignore temperature effects in this discussion. even though
it is commonly known that the work done on the material in order to cause plastic
deformations contributes to an increase in the temperature of the material. (For
discussion of a model with temperature effects in hyperelastic plasticity sce [16].)
Furthermore, we shall ignore dependence of the stress on the rate of deformation,
since this will contribute to 2 diffusive term in the system of differential equations
describing the motion. Finally, we assume that the material is isotropic, even though
finite plastic deformation will usually introduce anisotropies in the material response;
see [16]). These are ofien modeled with kinematic work-hardening, through a back-
stress; we have not included these terms in our discussion below in order to simplify
the exposition.

6.2.2. FElastic-Plastic Model

Our analysis in this scction is based upon the general discussions of plasticity
with work-hardening in [13] and [30]. Note that specific application of our nu-
merical method to the cap model for plasticity in soils and rocks appears in [44];
the cap modef involves four yield surfaces, two of which depend on the hardening
parameter.

We assume initially that there is a yield function ¢ depending on the Jaumann
unrotated stress (6.5) and on a work-hardening parameter X. The purpose of the
yield function is to place a constraint on the admissible values of siress for a given
level of hardening. Specifically, for ¢ < 0 the material response is assumed to be
elastic. The material response is also elastic if ¢ = 0 and the rate of deformation
leads to a nonpositive rate of change of ¢. Otherwise, the material response is
plastic. For simplicity, we shall assume that the elastic rate of deformation is infin-
itesimal, so that the rate of deformation is the sum of the elastic and plastic rates
of deformation:

D=D"+ Dr.
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(The correct generalization of this equation to finite elastic and plastic deformations
is described in [16].) We also assume that the elastic stress-strain relationship 1s
given by the analogue of (6.7):

Se=D2u+ 1(« - %“)nr e,

Our next goals are to describe the circumstances under which plastic loading occurs
on the yield surface, and to determine the plastic rates of delormation,

During elastic response, no additional permanent deformations are introduced.
Thus,

dx
ar =0 during elastic response.
T

D?P=0 and
Elastic response occurs in two ways: if the unrolated stress lies inside the yield
surface, or if the stress lies on the yield surface and the rate of change of the yield
function is non-positive. Let us give a mathematical representation of the latter
condition. 1f the stress lies on the yield surface, meaning that ¢(S, x) = 0, then
unloading (or neutral loading) occurs, and the material response is elastic, if

do dS\ 3¢ dx
b- = Po— 4+ ——
0=z T "( § dr) ax dr

2
= tr(@s[ﬂT D12y + l(( - ?“)lr D]) during elastic response.

Here, we have used the notation

3]
( ¢$)u = a_‘gL

for the matrix of partial derivatives of the yield function with respect to the unrotated
stress. During plastic loading, the stress lics on the yield surface, and the rates of
deformation are such that elastic response would move the material state beyond
the yield surface:

2
0< lr(t!’s[ﬂTDﬂZp + J’(x - —;)lr D]) during plastic loading.

In order to determine the rates of plastic deformation during plastic loading,
two pieces of information must be specified. First, we must specify the rate of
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change of the hardening parameter. Generally, this is taken to be a linear function
of the unrotated rate ol plastic deformation:

ax _ i X, QT D).
dr

Secondly, a flow rule must be prescribed. We shall discuss associated flow rules,
derived from Drucker's hypothesis, which basically states that useful net energy in
addition to the elastic energy cannot be extracted from the material and the applied
forces. Rather than formulate this hypothcsis mathematically, let us list some of
its conclusions. First, the yicld surface must be a convex function of stress. Second,
the plastic rate of deformation must be normal to the yield surface, pointing out
of the region of admissible stresses, at points where the latter is continuously dif-
ferentiable, and must lic between adjacent normals at points where the yield surface
is not continuously differentiable. Third, the plastic rate of deformation must be a
linear function of the stress rate. (A simple denivation of these conclusions appears
in Fung {13]. For finite strains, the normality condition is not a necessary conse-
quence of Drucker’s postulate; see Naghdi and Trapp [33].)

Now we can derive a formula for the plastic rate of deformation from these
conclusions of Drucker's hypothesis. At points where ¢ is continuously differentiable,
the associated Mlow rule requires that the unrotated rate of plastic deformation
salisfies

QToM) = P

for some positive scatar a. Thus during plastic loading,

d 3
0= a9 _ tr(‘i’s 515) + £ (X Q" D7) = lr(@_\-[QTDﬂz‘u + l(x - 2—3")“ D])

dr dr
o 2
+ [a—:i r( Xe®s) — ll'(‘l’_\‘[‘[’szﬂ + l(« - —;)tr 4{;])].::.

We can solve this equation for « 10 get

I . 2
asg lr(d’_..-[!!‘DHZu + l(x - -;i)nr DD ,

where

2 il
,6 - ll(¢g[¢x2ﬂ + I(K - Tn)lf((‘)s) - a—;b'XE]) .

h
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6.2.3. Acoustic Tensor .
This equation allows us 10 write the stress rate in terms of the rate of deformation:

Q ds
o

T

QT =D+ I(x - %“)u D

2 1
- [QQSQTZ,: + l(x - %‘)tr d"_g] tr(\bs[ﬂ‘m:!y + I(: - —3—“)|r D])E .

Note that we can use the ordinary differential equation (6.9) for the rotation matrix
1 1o rewrite this equation in the form

ds. 1 (T _ o (e[ (2]
7F+5[(£) ax SE+SF’[6x axy |2 6x+ ax) |*

2y v . zp) ]1
—— —_— — —tr 1=
+1(.= 3)"ax [thsn 2p.t+l(u 3 ) os|3

av  favyT 2p\ dv
T)] bl _-r il N
Xtr(d’s[ﬂ L”x+(6x) ]9#+I(I( 3)"61'])
In this way, we find that the acoustic tensor is

1
Ag=H-m—m"+C,
(e.11) £ i

where i and C are given by (6.8)-(6.9), and

2
mm Qb 2y + ng(« - -ag)lr Py

Again, we must perform some analysis to show Lhat this matrix has real positive
eigenvalues.

6.2.4. Analysis of Hyperbolicity _

The eigenvalues of I/ are u/fpy, p/pg, and (x + 4u/3)1/py. Standard estimates
from linear algebra (see {15]) can be used to show thal the e¢igenvalues A, of
H— m{1/pe 8)m7 satisly

PE el PE PE

If we can ignore the contribution C te the acoustic tensor from the stress rate terms,
then the characlenstic speeds for the material undergoing plastic yield cannot be
larger than the characienstic speeds during elastic response. We could also use the
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first inequality to determine a sufficient condition for hyperbolicity; however, we
shall perform a different analysis 1o derive a necessary and sufficient condition.
Note that congruence relations preserve the signature of matrices; in other words,
two congruent matrices have the same number of positive, zero, and negalive ei-
genvalues. Our goal will be to use a congruence transformation to develop a necessary
and sufficient condition for the positivity of  ~ m(1/p;8)mT. Let  be the
orthogonal matrix in (6.10). Then i — m(1/pg 8)m? is congruent to

M
+_
T3

I 1
af —m—m"| Q- "?
PE pel

AL L R
£r

= 1= H2QUm(1/p, B)MTQH 2.

Two of the eigenvalues of this matrix are one: the other eigenvalue is positive if
and only if

c+ s
| ; 1 3
Lo — 'O 'QTm = mQ| I-e el |07
pf 0 i 'H_& r|em
(6.12)
1 l+§
= me_(anE)Z
ppe B 4u
3

This gives us a necessary and sufficient condition for the positivity of the matrix
H-—m{lfp.g)ym".

'6.2.5. Von Mises Yield Surface
As a spectal case, we consider the von Mises yield surface

Sy = hir 87 - 7,
where 8" is the unrotated stress deviator

tr S
S=5-7—.
3

This is a perfectly plastic yield surface for which
=85, Xg=0,

m=080Tm2e |, g= 2utr 87 = 4up?,
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Condition (6.12) for the positivity of the eigenvalues of B — m(1/p¢ 8)m" becomes

x+&

Jur §2 > al 250 ng — (nFOSQ T ) "
£+ T

for all unit vectors . Let us define
§=07asa’Q,

where Q is defined in (6.10). Then the inequality (6.12) is equivalent to

l+§ X +§-
1§;8,= ju $i> el 5%, — (el Se,)? rria $,8,—- Sh e
x +T x+?

Afer expanding the sums in this expression and canceling terms, we obtain the
following necessary and sufficient condition (if we can ignore the contribution C
of the terms from the stress rate in the acoustic tensor ) for real characteristic speeds
during plastic loading with a von Mises yield surface:

> 0.

is non-negative. For most metals, Poisson's ratio is approximately 0.3, and the
hyperbolicity of the equations of motion is closer to being established.

6.2.6. Nonsymmetric Stress Rate Terms

We have postponed until now the discussion of the effect of the matrix C on
the cigenvalues of the acoustic tensor (6.11) for plastic loading. Since (', defined
by (6.9), is linear in Sg and zero if Sg is a multiple of a diagonal matrix, it can
only depend on the deviatoric siress §'. The yield function ¢ typically bounds the

A HIGHER-ORDER GODUNOV METHOD 73

deviatoric stress, keeping its norm typically two orders of magnitude smaller than
the shear modulus w. Thus, C contributes only a small perturbation to the acoustic
tensor, and will not destroy hyperbolicity of the equations of motion unless the
eigenvalues of 1 ~ m( b/ o @)ym?" are near zero or nearly equal.

We could try other siress rates that kead to symmetric acoustic tensors, such as
the Truesdell stress rate, since reasonable thermodynamic assumptions require this
symmetry. However, these stress rates lead 1o problems in numerical implemen-
tations, since zero stress rate does not imply censtant invariants of stress. We would
try hyperelastic models, since they do not involve the complications of objective
stress rates, but they have not been successful in reproducing laboratory data. Our
choice of models reflects the goal of our research: 10 study wave propagation in
models of practical interest, The propagation of waves dominates our model re-
quircments: the models must generate hyperbolic systems, so that initial-value
problems are well posed. Given this caveat, we have shown that the models in this
paper are acceptable for our numerical work below.

7. Numerical Method

Our next step is 1o describe a numerical method for solving the Lagrangian
equations of motion. The basis of 1his method is to use the local hyperbolic structure
of the equations of motion to upstream-center the differencing and to resolve the
interaction of waves at cell interfaces, We acknowledge that there may be global
pathologics in the wave structure that the curremt method may not be designed to
handle. Our approach is to use this method 10 examine the structure of finite-
amplitude waves, while proceeding with care due to the limitations of the numerical
method.

We will use a second-order variant of Godunov's method, which is described
in Colella and Glaz; see [10]. The reader interested in a survey of Godunov-type
schemes for hyperbolic systems of conservation laws should read the paper by
Harten et ul. (see [18]); a recent survey of numerical methods for hyperbolic con-
servation laws can be found in Yee; see [ 50].

The second-order Godunov method has been very successful at computing the
correct entropy-satisfying solutions to problems in gas dynamics, even in the pres-
ence of strong shocks. Lately, the second-order Godunov method has been applied
to problems outside the realm of gas dynamics. The most notable of these appli-
cations has been petroleum reservoir simulation; sce [4], [5], [42], [43]. This
application involved considerable additional difficulties not present in gas dynamics,
but found in solid mechanics. In reservoir simulation, the characteristic speeds are
not necessarily hyperbolic, and they can be locally linearly degenerate. Furthermore,
it is possible for the wavespeeds to be discontinuous at points where new fuid
phases are formed. Because of the significantly greater complexity of the hyperbolic
wave structure of the reservoir flow equations, it has been necessary to develop a
stable and appropriately accurale approximate solution to the Riemann problem
for general hyperbolic systems; see [6]. The success of the second-order Godunov
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method on these very complicated problems gives some degree of confidence in
extending this method to shocks in solids.

Since our numerical resulis in this paper will be restricted to one dimension,
we shall restrict our review of the second-ordet Godunov methed to one dimension,
as well. The method consists of seven steps:

. Characteristic analysis and time-step estimation;
. Monotinized slope computation;

. Characteristic tracing;

. Flux computation;

. Conservative differences;

. Rotation uvpdate;

. Stress update,

Al SRVU S R

We shall consider each of these steps in turn.

7.1. Characteristic Analysis and Time-Step Estimation.

We compute the wavespeeds using the characteristic analysis applied 10 the
non-conservation form (5.3) of the Lagrangian equations of motion, These equa-
tions involve derivatives of quantities

SE€|

for problems in one dimension. We subscript w by its grid cell index, and superscript
it by its discrete time level. With respect to these variables, we have shown in
Section 5.1 how 1o compute the eigenvectors and eigenvalues of the lincarized
coefficient matrices. The maximum stable time step for the second-order Godunoy
method on a uniform grid is governed by the Courant-Friedrichs-Lewy condition

Ar
man —— = 1.
x..Ms

Here, Ay, is the largest absolute value of the eigenvalues of the lincarized coefficient
mairix B, as shown in (5.7). This condition must be satisfied for all the cells in
the grid. Because the maximum wave speed of the continuum may not be sampled
well in the discrete calculations, we usually require the left-hand side of this inequality
to be less than 0.9,

7.2. Slope Computation

Our next siep is 1o compute slopes in the flux variables w, to expand these
slopes in terms of the characteristic directions, and to limit these characteristic
expansion cocfficients to preserve monotonicity. The effect of this is to selectively
introduce numerical viscosity only in the individual cells and individual charac-
teristic families that are attempting to oscillate. As a result, the amount of numerical
viscosity added to the computation is greatly reduced.
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We hegin by using the eigenvectors from the characteristic analysis {5.7) o0 L'
compute the vectors of expansion coeflicients for the jumps in w:

XA 0 -XA
Xtm| BIX 1 BTx |,
XA, 0 XA,

1
(7.0 c-“.,z-(X,‘)"(w,’u.uw,")A—a.

. ) 12
¢ =Gt o'

Next, we modify these slopes in order to avoid the introduction of any new extrema t
in the piccewise-lincar profile for the characteristic quantities. For the i-th wave
family. the slope in the j-th cell at the k-th time level is given by

¢

(7.2) ch = sgnteImint Fle, vl L legl Byleiiizl],

where @, = 2. For genuinely nonlinear conservation laws, it is permissible to take
8, = 2. However, if the system of conservation laws possesses loca! linear degener-
acies, it is sometimes necessary to take g, (o be smaller; see [6]. In the examples
ol this paper, we found that 8, = 2 was sufficient. However, in other applications
to solid mechanics (sce {44]) we have found it useful to compuie 8, as described
in [2]: if differences between eigenvalues of the same family in neighboring cells
indicate that the gradient of the charactenstic speed has changed sign, then 8 is
reduced to 1.5.

Also note thal the characteristic speeds and directions can change abruptly
when plastic loading begins or ends. These discontinuities in the characteristic
structure are associated with shocks in the material response. In order 1o ensure
that the computational scheme produces the correct discontinuities, we introduce
additional numerical viscosity by setting 8, = 0 in cells whose neighbors are not
undergoing the same loading conditions,

1.}, Characteristic Tracing

The next step in the second-order Godunov method is 10 use the piccewise-
lincar profile described by (7.1) and (7.2) to approximate w at the cell edges and
half-time level. From Taylor’s theorem, the guasilinear form of the equations of
motion (5.3), and the charactenistic analysis we have

wia, + Jaa, 7* + LAr) = w! +(6 ) {aa +( )gm

= w} + Xf[fAa ~ A} Ar)ch s
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This approximation forms the edge-centered values of the flux variables by tracing
the characteristics with posilive characteristic speed into the j-th cell, and the char-
acteristics with negative characteristic speed into the { j + §)-th cell. In order to use
only upwind information in constructing the edge-centered states, we shall take

(7.3} whop=wi+ 2 Xlelda- M Arychin.

£, >0
1n a similar fashion, we trace

(1.4) Wf, 12 = “';‘wl -z xf* we{da + MJA1 )ctf‘ sz
'

Even though these states ignore some of the terms needed 10 maintain second-
order accuracy in the Taylor expansion. the solution of the Riemann problem in
the next step will recover the accuracy.

7.4. Flux Computation

By tracing characteristics from the left and the right, we have used the piecewisc-
linear profiles 1o establish two distincl states at the cell edges. The interaction in
time of these traced states can be resolved by solving a Riemann problem and
evaluating the flux at the stationary state in its solution. Unfortunately, the analytic
solution of the Riemann problems for the material models in this paper are not
known; further, even if they were known, they would very likely be very complicated
to evaluate. (See, for example, [25], [39], [41], and [46].)

Our approach is 1o approximaie the solution of the Ricmann problem, We note
that the second-order Godunov method does not require that the local intgractions
of the waves be handled any more accurately than the underlying discretization
errors. Our basic construction of the solution of the Riemann problem is motivated
by the results of Wendroff in [48] and Liu in [29]. They showed that the left and
right states in the Riemann problem are connected by a series of curves in stale
space corresponding to each of the characteristic families. H is well known that the
eigenvectors are tangent (o these wave curves for the appropriate families. This
supgests that we expand the jump between the left and right states in terms of the
eigenvectors. In one-dimensional Lagrangian coordinates, two or three of the char-
acteristic speeds are positive, two or three are negative, and the remainder are zero.
There are always two linearly independent characteristic directions corresponding
1o the zero wavespeeds; further, these directions are constant (since they are just
columns of the identity matrix). IT plastic yielding generates an additional pair of
zero characteristic speeds, then there is only one linearky independent characteristic
direction for this pair, with a corresponding eigenvector deficiency.

For simplicity, we shall ignore the eigenvector deficiency and reorder the eigen-
values and matrix X of eigenveciors

Xh= (X)L XX
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comresponding 1o the signs of the characleristic speeds. Next, we decompese the
jump between the feft and right states in terms of the eigenvectors from the upwind
cells by selving for the cxpansion coefficients ¢, 4 1,2 in

R — = Ay- o 0.0
wh = wh s = XD G F X XY e

We want to compute the flux at the intermediate state that moves with zero speed.

Since the information that moves with zero characteristic speed forms a contact
discontinuity, its characteristic speed and its Rankine-Hugoniot speed should both
be identical. Thus, it should be equivalent 10 use the flux evaluated at either

N by o
wihip XY an
or
R ryk
Wi (X;+I)*cj’+|,f2'

We shall usc the average of the flux at these two states to compute the approximate
flux in our conservative difference scheme;

G:::f’zz = ![GJ (“‘fn et (X})_('L |12) + G.L{ann - (Xf+ l)’fﬁ |,uz)]-

In the casc that plastic yielding creates an eigenvector deficiency in one cell
hordering the edge where we are computing the flux, then we use the existing
characteristic direction for the degenerate zero speed to construct the approximate
phase-space path. For example, if A, is singular, we decompose the jump wf ,,, —
w/ 142 28 before, and evaluate the flux at w}, ;> plus the sum of the parts of the
approximate phase-space path corresponding to negative characleristic speeds (the
part of the path corresponding to the degenerate zero speed is ignored). If both
cells bordering the edge where the fux is being computed have eigenvector defi-
ciencies, then we compute the leasi-squares projection of the jump onto the char-
acteristic directions coming from nonzero wavespeeds, and continue with the flux
evaluation as before, Because of rounding errors in the computations, the latter
case 15 extremely rare.

7.5. Conservative Difference

The next step in the second-order Godunov method is 1o compute the conserved
quantities at the new time level. By applying the divergence theorem 1o the con-
servation law (5.13-(5.2) in the time-space box |a — g;| < {4a,0<7— r* < Ar,
and by applying centered quadrature rules for the integrals, we obtain

a
(1.5) WY = k- E: (G -Gt

L |
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Note that the characteristic tracing (7.2)-(7.3) was performed on the quasilinear
form of the equations (5.3), while the conservative differences use the form {5.1)-
(5.2). The quasilinear form incorporated the stress-rate equations directly, with
the equality of mixed partials (1.3} used to replace time derivatives of the defor-
mation gradient. However, the conservation form (5.1 )-( 5.2 Yused in the difference
equation (7.5) gives us new values for the deformation gradient without updating
the stress.

7.6. Rotation Update

For the Jaumnann stress rate, we compute the rotation matrix by using the or-
dinary differential equation (6.3). This requires the spin tensor, which in turn
depends on the velocity gradient. In order to compute the gradient of the velocity,
we compuie the current position vector x at the cell edges and half-time level by

] X
x;:l'.flz =xt 0+ vyl Rark

Here, the velocities were obtained by the solution of the Riemann problems at the
celi edges. We compute the first column of the velocity gradient by

@ Vi T Vi,
ax kvt k+1/2 ¢
J

(&\r)“”z vhun vkn/z
Xiv 1 —Xy-1y2

the second and third columns are zero since the motion is one-dimensional. The
rate of deformation is taken to be the symmelric part D of the velocity gradient,
and the spin tensor is the antisymmeltric part.

Hughes in [ 20] and [22] shows how 10 integrate the ordinary differential equa-
tion (6.3) for the Jaumann rotation with second-order accuracy in time:

ﬂf* - ﬂ: + WJI:+ !I![ﬂf+l + Q:c]l,'Z_
It is easy to see that f remains orthogonal:
o) - oa
where the orthogonal matrix Q is defined by
Q=- Wi "any (1 + wiVar).

It is also useful to note that the spin tensor is singular, and its null vector z (which
provides the axis of rotation for (J) satisfies

Wit = z x b for all veclors b,

This allows us to compute the square root of ( for use in evaluating the rotation
tensor at the hall-time level:
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Quz = (! - WJ" 4 Iﬂn_l(l + W:’ an'

where

DU [ S
f I+ V1 +z7z(1Ar)2

7.7. Stress Update

The final step in our algorithm is to update the stress at the new time level, For
an elastic or hyperelastic constitutive law, this requires only a direct evaluation,
For constitutive laws specified by a stress-rate equation, it is necessary to integrate
the ordinary differential equation (1.2} for the stress. This integration must be
sufficiently accurate 1o maintain the global second-order spatial and temporal ac-
curacy of the second-order Godunov method. Also, for plastic loading this ordi nary
differential equation needs to be integrated subject to the yield surface inequality
¢ = 0. Because the CFL condition for the conservative difference considers the rate
of change of the stress, we shall not need to concern ourselves with the stability of
our stress integration technique for large timesteps.

Because the constitutive laws are typically specified in terms of the Eulerian
stress, we typically integrate (4.1) rather than (1.2}. In order to compute a second-
order accurate approximation to the stress at the new time level, we use an implicit
trapezoidal method with a Lagrange multiplier correction for the yield condition;
sec [14]. This method takes the form

Sh+1 . gk N . v \kH 1z
= Y s = ) k i+ 1 2 ;
e FHH, (S} + H,, (S n(ﬁx.),. &

- - k+1 _ gk
F AR + st 1 L et e

Here, o is a scalar chosen so that the yield condition ¢ = 0 is satisfied exactly at
the new time level, Note that the coefficients l:l,-,, ﬁ,. and &, have been evaluated
at the half-time level by using averages of their values at the full-time levels. Since
these coefficients can be nonlinear functions of the stress, the resulting difference
method defines the siress at the new time level implicitly.

This does not necessarily mean that a nonlinear iteration is required to compute
the new stress. Let us consider this method for a von Mises yield surface. If D’ is
the deviatoric part of the unrotated rate of deformation, then the rate equation for
the unrotated stress deviator §' is

s
EADz# § tr 5!
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Using the implicit trapezoidal method, we obtain the discretization

kv | Otk
s -8

Y - D;lu I122“

k41 pyrk+ 172 korytk+ 172
t_rsuj__! #+S;tﬂ_‘g;DL_)2u]+3;t+lm

- Tk + 1
i[sj ¥ ‘r(s)rlu'l)l ll'(S;k)z

This gives us the equation

Ar ‘r(sﬂk+ lDlt+ lfz)
ol Yo S ouet?

S;lul[l+ 3 (S Ny

2u - O'Ar]

ok pyrk+ 142
‘*[l _HE."(_SI_.DL_)z" + D}""""IZuAr.

T 2~ w(SH?

Thus, $** " is a scalar multiple of the matrix on the right. This suggests that we
compute the matrix on the right, then compute the norm of the updated stress and
scale the stress back 10 the yield surface. (However, for yield surfaces more com-
plicated than von Mises, we have found it useful to use an implicit midpoint method;
see [44].) .

In order to compute the Eulerian stress at the new time level and cell center
using the Jaumann stress rate, we musl compute the unrotated stress at the old
time level and the unrotated rate of deformation at the half-time level. The former
is

Sk =(047T(Se)re),
while the latter is
(QF)T(Q”!)TDf* IIZQIRQ:.

After we have updated the unrotated stress, we need to rotate it to form the Eulerian
stress at the new time level:

(SE);(H " Qﬂ} S:u ] (ﬂ:f)TQT_

We also complete the computation of x at the new time level.

8. Numerical Results

We shall present several numerical results to illustrate the anaiysis of the char-
acteristic structure for elastic-plastic solids and to demonstrate the success of the
numerical method. All of our Cartesian ¢xamples are similar to, or modifications
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of, problems due 10 Wilkins; see [49]. This model uses a von Mises yield surface
to describe aluminum, for which the density, shear modulus, and yield sirength
are given by

pL = 2700 kg./m.}
g =248 X 10" pa.
n =172 X 10* pa.
The pressure is taken 10 be a function of the strain measure
i

Y- -1=

1y,
| |

'bi'b
- oim

specifically, the pressure is the following function of  in units of pascals:
PP (T3 X100+ (172X 10" + ¢4 X 10'%)).

From this, we compute the instantaneous bulk modulus

1
[ ¥l

I
I

e 414

In the calculations below, the Jaumann stress rale was used to describe the deviatoric
behavior of the material. .

In our first example, shown in Figures | and 2, we examine the results of one
aluminum plate stnking another at a velocity of 200 meters per second. Initially,
the left plate hits the right plale in the center of the grid. The impact generates two
waves moving left and two waves moving right. By plotting the variables versus the
distance from the point of impact divided by the elapsed time, we readily see that
both waves moving to the right are in the fast wave family. The fastest wave is a
shock, called 1he elastic precurser. Because the yield condition creates a discontin-
uous change in the charactenstic speeds, the elastic precursor is separated by a
constant slale from the slower shock, the plastic compressional wave. Note that
the constant state separating these waves shows a discontinuous change in the char-
actenistic speed, corresponding 1o the choice between during loading and unloading
for states on the yield surfacc. In this problem, the volumetric strains { measured
as the logarithm of the detcrminant of the deformation gradient} are small {less
than 2% ). Note that the numerically chosen characteristic speeds assume a very
large value in the center of the grid. Due 10 computational errors, these states have
fallen just inside the vield surface, and have adopted clastic characteristic speeds.
The results in Figure 1 were obtained by using 500 cells in the grid. Figure 2 shows
the pressure profite for calculations using 63, 125, 250, and 500 grid cells.
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HILKINS FLYING PLATE

HAYESPEED

Figure 1.
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Infinite aluminum plates siriking at 200 m /sec.
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Figure 2. Gnid refinement study for Figure |.

In Figures 3 and 4 we show two plates striking at 2000 meters per second. In
this problem, the elastic precursor is very small. However, the volumetric strains
become quite large; and because the metal is 50 compressed in the constant state
around the point of impact, the characteristic speeds reach large values in this
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Figure 3. Infinite aluminum plates striking at 2000 m/sec. plastic region. The plastic characteristic speed is around 8400 meters per second,

but most of the cells contain elastic states near the vield surface with characteristic
speeds around 9100 meters per second. Because of the sirong compression, the
plastic shock is very strong and self-steepening; as a result, a first-order method is
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perfectly adequate for this problem. In fact, a pure second-order version of Go-
dunov’s method produces shocks that are 100 sharp and oscillate behind the wave.
We have used slope flattening (see [9]) to introduce a linear viscosity in Lhose cells
that are in the midst of strong shocks. Figure 4 shows the results of a grid refinement
study for this problem.

In Figures 5 and 6 we show the 1otal siress { first diagonal entry of the Cauchy
stress {ensor) in a one-centimeter wide aluminum plate striking a four-centimeter
wide plate. The impact velocity in Figure 5 is BOO meters per second, and 2000
meters per second in Figure 6. Initially, the impact generales an elastic precursor
and a plastic wave in pairs moving left and right. As the waves moving left bounce

off the free surface, they become rarefactions moving right and overtake the shocks

moving 1o the right. In contrast 10 the results in [49], the claslic precursor shock
is very well resolved in Figure 5, and there are no noticeable oscillations hehind

the slow rarelaction.
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In Figures 7 and B, we impulsively streiched an aluminum plate by giving the
teft half a velocity of 200 meters per second. In this case, elastic precursor and
plastic waves are both rarefactions, as is clearly indicated by the plot of the eigen-
value. Normally, the metal would have been modeled as reaching failure when the
pressure teached minus one-third the yield strength; however, we suppressed the
failure model in this calculation. Also note that the constant state between the
elasiic precursor and the plastic wave has a discontinuous change in its characteristic
speed, due to a change in the direction of loading at a state on the yield surface.
Figure 8 shows a gnd refinement study for this problem.

In Figure 9 we show the results of shearing an aluminum plate with a transverse
velocity of 10 meters per second. This generates a relatively large elastic shear wave
moving at slightly more than 3000 melers per second; the eigenvalue plots identify
this wave as a weak shock. The shearing motion also generates a small compressional
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wave, moving at more than 6000 meters per second; this wave is also a shock. The
longitudinal velocity in this wave ( Figure 9a) is four orders of magnitude smaller
than the transverse velocity that initiated the motion, and appears from grid re-
finement studies 1o be correctly resolved in this figure, Figure 9b shows that the
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strains are very small, and the maximum rotation in the polar decomposition of
the deformation gradient is also very small.

In Figure 10 we shear the plate with a transverse velocity of 100 meters per
second. In this case, the material yields in the center, and the smallest characteristic
speed is zero at this poiat. This corresponds to an eigenvector deficiency in the
characteristic structure (see Section 5 above}. There is a compound fast wave,
involving a rarefaction and a shock, moving at more than 6000 meters per second.
This wave gencrates longitudinal velocities that are roughly four orders of magnitude
smaller than the transverse velocities. There is also an elastic shear wave, moving
at slightly more than 3000 meters per second. The stationary wave is due to plastic
yielding, and would normaliy correspond to faiture of the material. Note that the
material is highly rotated at the center, and that the principal strains { the logarithms
of the eigenvalues of the symmetric matrix in the polar decomposition of the de-
formation gradient) are very large at the center.

Qur next set of examples involves a spherically symmetric elastic material un-
dergoing infinitesimal displacements. Although this problem does not exercise the
large displacement aspects of our numerical method, nor the plasticity models, it
does generate interesting results for which there are analytic solutions due to Blake;
see | 7]. We have made minor modifications to the second-order Godunov method
in order to handle the spherical symmetry. The characteristic analysis of the models
is easily incorporated, but the geometric source terms must be accounted in the
characteristic tracing step and the conservative update.

Our material has an clastic modulus

E=6X10"pa.
and a Poisson ratio of 0.2702. This leads to the following bulk and shear moduli:
x = 435X 10" pa,
=236 X 10" pa.
The material density is
oL = 3000 kg/m’.
At the inner radius of 0.1 meters we impose a constant pressure of 10* pascals for
r>0.

Figures 11 and 12 show a comparison between the numerical solution with the
second-order Godunov method and the analytic solution due to Blake. Blake’s
solution is plotted with a solid line, and the cell-centered values of the numerical
solution are plotted with + signs. In Figure L1 we show the profile of the radial

displacement, velocity, 8, # component of the deviatoric stress, and the pressure at
1.6 X 107* seconds, for a 200 cell grid. Note that the peak velocity and pressure
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Figure | 1. Solutions proRles for Blake's problem.

are less than the analytic values: also note that the Godunov method is placing
about five cells in the discontinuity. This is the case because the discontinuity is
very weak, since the nonlinearities in the model are not active. ( The radial dis-
placement at the inner radius is six orders of magnitude smaller than the radial
position, so the volumetric strains are truly infinitesimal.) In Figure 12 we show
the results of a grid refinement study for the pressure. These results show linear
convergence of the peak pressure to its analytic value, due to the errors in capturing
lhe_discominuily. Nevertheless, the results at all cell sizes are free of numerical
oscillation and show convergence of the method to the correct answer.
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Figure 12.  Grid refinement study for Blake's problem,

9, Conclusions

1n this paper we have presented a complete sct of equations needed 1o wrile the
equations of motion for finite deformation of sofids in first-order conservation
form, in both the Lagrangian and Eulcrian frames of reference. We also examined
the characteristic structure of these systems of equations in both frames of reference,
including thermal effects, in order to determine the circumstances under which the
characteristic speeds are real and to guarantee the correct relationship between the
two sets of charactenstic speeds. We analyzed several models of common usage
and showed that both elastic and plastic response with these models leads to hy-

A HIGHER-ORDER GODUNOY METHOD 97

perbolic sysicms, under reasonable conditions on the model parameters. We found
the possibility of coincident wavespecds, eigenvector deficiencies, compound waves
due 10 local lincar degeneracies, discontinuous change in the characteristic structure
at yield, and multiple waves in the same characteristic family separated by constant
states. Finally, we constructed a second-order Godunov method that successfully
solved a variety of problems in one Lagrangian coordinate dimension, without
introducing annoying numerical oscillations or algorithmic parameters that reguire
fine tuning. Qur numerical method was able to resolve global pathologies in the
wave structure, such as local linear degeneracies and nearly coalescing characteristic
speeds, using only information about the local wave structure.

Two of these results are non-ctassical. First, we have studied the hyperbolicity
of the equations of motion using a kinetic equation of state in rate-form. Second,
we have studied the curl condition on the deformalion gradient as a consiraing
on the first-order system of conservation laws. This constraint is similar 1o the
div B = 0 condition in magneto-hydrodynamics, and must be periodically re-en-
forced in order to avoid problems in numerical schemes.

In forthcoming papers, we shall describe the extension of the second-order Go-
dunov method to problems in multiple spatiat dimensions. We have also applied
the method 10 more complicated matenal models; indeed, we have already com-
pleted a numerical implementation of a second-order Godunov method for the
cap model; see (44]. In a parallel effort, we have cxamined the structure of finite-
amplitude waves in the longitudinal motion of one-dimensional nonlinear solids
with plastic yielding; see [45). However, the extension of analytic techniques 1o
the solution of Riemann problems for systems of more than two equations is, in
general, very difhicult.

We acknowledge that there may be global pathologies in the wave structure that
the current method may not be designed 1o handle. Our approach is 10 use this
method Lo examine the structure of finite-amplitude waves, while proceeding with
care due 1o the limitations of the numerical method. We have, however, observed
local linear degeneracies, as well as nearly coincident wavespeeds which should
have corresponding eigenvector deficiencies. These pathological waves are shown
in Figure 10, and have been captured adequatety using the method described in
this paper.

This work has raised several interesting mathematical questions. For example,
it is not clear that the jumps obtained at discontinuities must be independent of
the path of integration for the ordinary differential equations describing the kinetic
equation of state. In our calculations thus far, we have not observed any indications
of any sensitivilies in this regard; if they exist, these phenomena could be activated
by changes in the CFL timestep selection parameter. [t is also unknown if correct
jumps occur in the limit of vanishing diffusion or dispersion.

We also note that this work raises some questions about the correct formulation
of material models. Because of the asymmetry of the acoustic tensor for the Jaumann
or Green-Naghdi stress rates, il is possible that complex wavespeeds might be ob-
tained in some circumstiances.
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